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The potential of Intelligent Tutoring Systems (ITS) to influence learning may be greatly enhanced by the 

system’s ability to accurately assess a student’s cognitive state in real-time. For this to happen, interactions 

with, and reactions to, training content must be collected and assessed; data is then used to inform 

instructional adaptation within the system. Validated sensors are available for this purpose and have been 

shown to correlate with cognitive and affective states linked to learning. However, sensors used to inform 

student models are often expensive and impractical for wide-range use. In this paper the authors present a 

study evaluating the efficacy of using Emotiv’s Electroencephalogram (EEG) Affectiv Suite outputs to 

inform an ITS student model. In this experiment, seventy-three participants interacted with the Cultural 

Meeting Trainer (CMT), a web-based cultural negotiation trainer, while Emotiv’s engagement, short-term 

excitement, and long-term excitement metrics were indexed and logged. Our analysis assesses the quality 

of Emotiv metrics across one well-defined and two ill-defined scenarios. Results show consistent outputs 

across tasks and support further examination into the Emotiv’s ability to accurately track cognitive state in 

a learning environment. 

 

INTRODUCTION 

 

The functionality of Intelligent Tutoring Systems (ITS) 

has historically centered around theories of education that 

view thinking and learning as cognitive processes bound to a 

problem space (Woolf et al., 2009). While ITSs designed 

under this notion have been found to be effective in well-

defined academic domains (Koedinger, Anderson, Hadley, & 

Mark, 1997; Woolf, 2009), there are significant limitations to 

the current state of the art, with a large emphasis on examining 

the relationship between student affect and learning outcomes 

(Shute, 2007). Tracking states found to impact learning and 

retention will result in systems that recognize affect and 

respond with interventions that encourage effort, lessen 

humiliation, and provide support and motivation for further 

interaction. A state of interest linked with information 

gathering, visual scanning, and periods of sustained attention 

is engagement (Berka et al., 2007). Affective elements such as 

engagement and motivation are linked with cognition in that 

they guide memory and decision making processes (Norman, 

1981). They have also been shown to have a significant 

influence on learning outcomes (Craig, Graesser, Sullins, & 

Gholson, 2004; Woolf et al., 2009).  

Though these elements have been found to impact 

learning, ITS capabilities are bound to the available data 

streams they can access pertaining to an individual user. This 

requires identifying student modeling tools and methods for 

collecting affect relevant information that can be used to 

predict and track affective states in real-time (Sottilare, 

Goldberg, & Durlach, 2011). This data is used in conjunction 

with performance metrics to determine when and how to adapt 

instructional content. Detection of engagement, how it 

changes over time, and how it changes in response to stimulus 

can be used to select instructional strategies that maximize 

performance on the individual level. 

While human tutors are apt to recognize student 

engagement from visual and auditory cues, computer-based 

tutoring systems must distinguish these states from sensing 

technologies that monitor physiological and behavioral 

markers. Electroencephalogram (EEG) is a physiological 

variable of electrical activity along the scalp, and has been 

found to correlate with attention, memory and perception 

(Fabiani, Gratton, & Coles, 2000). Sensors such as the 

Advanced Brain Monitoring wireless B-Alert EEG system 

have been used in this context to assess workload and 

engagement measures (Coyne et al., 2010). However, the cost 

associated with these sensors, although appropriate for the 

research setting, is not cost-effective for widespread 

application. The goal of this research is to assess the efficacy 

of using a low-cost EEG headset to inform student models of 

real-time engagement levels. The Emotiv EPOC was selected 

for this study because it was under $500, with the major 

limitation that it does not provide raw EEG data streams. The 

research strategy is to determine the accuracy of their 

proprietary affective metrics by monitoring sensitivity and 

trends to variations in stimuli over time. A secondary 

objective is to identify correlations between Emotiv outputs 

and self-reported levels of engagement. 

 

METHODS 

 

Subjects 

 

Seventy-nine cadets enrolled at the United States Military 

Academy (USMA) at West Point were recruited as volunteer 

subjects for the experiment. USMA cadets were selected 

because they represent an Army relevant population of future 

Officers who will potentially interact with ITS integrated 

training platforms. They also represent an ideal sample for a 

university student population who lack specific skill sets, 

which is a key focus for development of such technology. Of 

the 79 subjects, 59 were male and 20 were female. Participant 

age ranged between 18 and 25 years of age (M = 19; SD = 

1.25) and all were registered at the time in the PL100 General 



Psychology course. All subjects reported no previous training 

in cultural negotiations prior to participation. Of the seventy-

nine subjects, six data sets were removed due to signal 

dropouts, leaving 73 usable sets. 

 

Apparatus 
 

Emotiv. All participants were fitted with the Emotiv 

EPOC neuro-headset (see Figure 1), a commercial-off-the-

shelf Electroencephalogram (EEG) brain-computer interface. 

The Emotiv is composed of 14 electrodes with locations 

following the American EEG Standard ("American 

Electroencephalographic Society Guidelines for Standard 

Electrode Position Nomenclature," 1991). Electrodes are felt-

based with gold-plated contacts and use saline solution for 

conductance. To maintain low-cost, the proprietary software 

development kit’s Affectiv Suite tool was used as is, avoiding 

the purchase of additional licenses required for accessing raw 

data channels.  

 

   
Figure 1. 14-Channel Emotiv EPOC Neuroheadset 

 

The Affectiv Suite reports three detection states in real-

time: Short-Term Excitement (STE), Long-Term Excitement 

(LTE), and Engagement (ENG). The tool looks for distinct 

brainwave characteristics that are universal in nature and do 

not require signature-building or individual baselining 

(Emotiv Systems). These detection states are the primary 

dependent variables examined. The purpose of this study is to 

test the accuracy of these detection states in a training context 

and assess their applicability for integration within ITS 

frameworks. As described by Emotiv, the excitement metrics 

are associated with positive feelings of arousal, and are 

characterized by physiological responses including pupil 

dilation, eye widening, and increases in heart rate and muscle 

tension. Outputs are produced that represent trends for short- 

and long-term time segments, with increases in physiological 

arousal resulting in higher detection scores (Emotiv Systems). 

In comparison, Emotiv defines engagement as the conscious 

management of attentional resources towards task-relevant 

stimuli; greater the focus and cognitive workload, higher the 

output score. This is characterized by increases in beta and 

attenuated alpha waves, which are both well-known types of 

EEG wave-forms (Emotiv Systems). 

Cultural Meeting Trainer. To test the efficacy of using 

Emotiv’s metrics for informing student models, a testbed was 

selected allowing tailored authoring of scenario content within 

a computer-based training platform. This enabled the creation 

of scenario conditions that range in task complexity and 

interaction characteristics. The manipulation of these variables 

is intended to produce differing levels of cognitive load and 

engagement for assessing Emotiv’s detection capabilities. The 

resulting study was conducted using the Cultural Meeting 

Trainer (CMT), a web-based flash system prototype applied 

for cross-cultural interaction training. The CMT (see Figure 2) 

is based on the U.S. Army’s Bilateral Negotiations Trainer, an 

immersive virtual environment that allows practice and 

execution of face-to-face negotiations with virtual humans that 

include cultural models (e.g., Iraqi Culture) (Kim et al., 2009). 

The CMT is specifically designed to facilitate the training of 

cross-cultural norms and customs associated with conversation 

and discussion leading up to negotiation. Subjects interact 

with CMT characters through a bank of dialog selections used 

for progressing story paths.  

 

 
Figure 2. Screenshot of Cultural Meeting Trainer (CMT) 

Trainee Interface  

 

To assess Emotiv’s capacity for tracking cognitive states 

across tasks of varying complexity, a counterbalanced within-

subjects experiment was designed. Three conversational 

scenarios were developed in the CMT with manipulations to 

two independent variables: (1) clarity of task execution and (2) 

presence or absence of character interruptions. Task clarity is 

based on how well mission objectives are defined. A well-

defined task follows a clear set of procedures for achieving 

mission success, while ill-defined tasks are associated with 

having ambiguous and vague objectives and comprise multiple 

approaches for achieving goals. Executing ill-defined tasks 

requires subjective reasoning and on-the-spot decision 

making. Variations in task clarity provide the ability to 

determine if Emotiv metrics produce observable differences 

between well-defined and ill-defined problem spaces. The 

second manipulation, presence or absence of interruption, 

occurs in one of the two ill-defined scenarios. This interaction 

allows assessment of the effect an interruption in task 

execution has on Emotiv metrics.  

To test these independent variables against Emotiv 

metrics, three interactive scenarios were developed: Well-

Defined No Interruption (WDNI), Ill-Defined No Interruption 

(IDNI), and Ill-Defined Interruption (IDI). Each scenario is 

based on the same storyline. The participant is instructed to act 

the role of a squad leader and is ordered to converse with 

hospital staff following a nearby insurgency attack. Each 

scenario is prefaced with a brief description of the interacting 

character and the objectives associated with the meeting. The 

WDNI task involves a new in-house physician and requires 

the participant to maintain casual small-talk while obeying 

cultural norms for the purpose of building rapport. The IDNI 



scenario involves the hospital’s lead physician. The goal is to 

gather information regarding the attack while avoiding U.S. 

commitments and assurances. The IDI task includes the 

hospital administrator with objectives for gaining U.S. support 

among hospital staff and determining current needs to sustain 

efficient practices. The IDI scenario incorporates an 

interruption in task progression by having the administrator 

suddenly speak out of turn. This will allow for determining if 

a break in the expected flow of interaction will have an effect 

on engagement and attention levels. Based on these scenario 

conditions, the following hypotheses were evaluated: H1: 

Emotiv will produce reliably different outputs across all 

metrics when comparing rest with task execution; H2: The 

interruption within the IDI scenario will produce a noticeable 

response in Emotiv metrics reliably across participants; H3: 

Emotiv metrics will show reliable differences between 

conditions; and H4: Emotiv outputs will correlate with self-

reported levels of engagement and mood.   

 

Procedure 
  

Upon arrival participants reviewed a description of the 

study and signed informed consent. Next, each subject was 

fitted with an Emotiv EPOC and given a demographics 

questionnaire. Information pertained to the participant’s age 

and education level, and prior experience in intercultural 

negotiations. This was followed by an introduction to the 

CMT interface through an initial conversation with a virtual 

character. The conversation provided a review of the study 

and allowed the participant to ask questions about the interface 

components and the sensor technologies they were wearing. 

This led into the first of three scenarios with conditions 

presented in random order across participants. Before each 

conversation, participants were instructed to relax during a 

two-minute window. The intention of this break is to mediate 

the effects of prior interactions on the Emotiv metrics, and to 

put subjects in a relaxed state before resuming task execution.  

At the end of each scenario, a 2-part self-report 

instrument was administered for the collection of dependent 

variables of interest. The first survey presented fourteen 

“engagement-specific” (α = .89) items pulled from the 

Independent Television Commission-Sense of Presence 

Inventory (ITC-SOPI). This bank of questions was selected 

because presence has been found to be highly correlated with 

attention signals and reasonably correlated with engagement in 

virtual environments (Lombard, Ditton, & Weinstein, 2009; 

Tang, Biocca, & Lim, 2004). All 14-items are scored on a 5-

point Likert-scale, with the mean providing an overall 

engagement measure. The second survey presented to each 

participant post-conversation was the Self-Assessment 

Manikin (SAM), a validated non-verbal graphic-based 

instrument used for evaluating Mehrabian’s three dimensions 

of mood: pleasure, arousal, and dominance (Bradley & Lang, 

1994). Each dimension is scored on a 9-point Likert-scale, and 

participants are instructed to mark the point most closely 

resembling their current state. A vector score is calculated 

across all three dimensions to produce a mood metric. These 

variables were collected for identifying correlations between 

self-report measures and the Emotiv physiological outputs. 

RESULTS 
 

In determining Emotiv’s efficacy for informing student 

models, several statistical tests were performed to evaluate its 

ability for tracking cognitive state over time. For analysis 

purposes, Emotiv data was segmented and post-processed in 

the following ways. Across all three outputs (STE, LTE, and 

ENG), averages were calculated within specified time 

windows for each rest phase and scenario condition. This 

enables the ability to track the Affectiv Suite outputs across 

time and observe differences in measures as a participant 

interacts with the system. Each scenario was divided into three 

time windows based on length of execution. A mean for the 

corresponding time window was calculated and used for 

comparative evaluations. In conjunction, a single mean for 

each rest phase was used to compare scenario segments 

associated with the conversation directly following. 

An initial test was run to identify if Emotiv’s Affectiv 

Suite outputs could reliably detect differences between rest 

states and training task execution. A repeated-measures 

Analysis of Variance (ANOVA) was conducted within each 

scenario condition to identify significant differences between 

associated time segments. This is to observe the trend in 

output metrics as individuals transition from a rest state into 

task interaction, and to view the effect time within scenario 

has on excitement and engagement scores. Results show 

significant differences across all Emotiv metrics. The 

following table displays ANOVA results for each condition. 

 

Table 1. ANOVA Results Comparing Windowed Time 

Segments across Each Scenario Condition and Emotiv Metric 

 

n F df p-value 

WDNI 

Short-Term Excitement (STE) 73 83.060 (1, 72) <.001 

Long-Term Excitement (LTE) 73 94.307 (1, 72) <.001 

Engagement (ENG) 73 68.571 (1, 72) <.001 

IDNI 

Short-Term Excitement (STE) 73 59.512 (1, 72) <.001 

Long-Term Excitement (LTE) 73 92.201 (1, 72) <.001 

Engagement (ENG) 73 53.543 (1, 72) <.001 

IDI 

Short-Term Excitement (STE) 73 58.868 (1, 72) <.001 

Long-Term Excitement (LTE) 73 94.639 (1, 72) <.001 

Engagement (ENG) 73 78.387 (1, 72) <.001 

 

Post-hoc analysis was conducted on all conditions to 

compare means of rest and scenario time segments. The first 

investigation was to identify trends in metrics going from rest 

phase into the first time segment of a scenario condition. The 

ENG metric shows to have the greatest difference in mean 

value between the rest and segment 1 window for all scenarios 

(ENG-WDNI-Rest [M = .471, SD = .016] vs. ENG-WDNI-

Segment1 [M = .622, SD = .008]; ENG-IDNI-Rest [M = .485, 

SD = .016] vs. ENG-IDNI-Segment1 [M = .604, SD = .009]; 

and ENG-IDI-Rest [M = .470, SD = .014] vs. ENG-IDI-

Segment1 [M = .618, SD = .009]). This is the only significant 



difference between time segments for the ENG metric, as 

ENG values become stable once task execution begins.  

For excitement metrics, the only condition to show 

reliable differences for both the STE and LTE mean values 

going from Rest through Segment1 was IDI (STE-IDI-Rest [M 

= .556, SD = .025] vs. STE-IDI-Segment1 [M = .456, SD = 

.021]; and LTE-IDI-Rest [M = .573, SD = .023] vs. LTE-IDI-

Segment1 [M = .484, SD = .020]). IDNI condition produced 

reliable differences for only the LTE values when comparing 

the Rest phase (M = .577, SD = .021) against Segment1 (M = 

.496, SD = .019), and no significant differences were found for 

WDNI. The largest effect seen in both excitement metrics 

occurs between Segment1 and Segment2 (see Table 2), with 

significant differences seen within all scenario conditions.  

 

Table 2. Pairwise Comparison Results for Emotiv Excitement 

Metrics between Scenario Time Segment 1 and Segment 2 

 

n Mean 

Standard 

Deviation 

Short-Term Excitement (STE) 

STE-WDNI-Segment1 
vs.  

STE-WDNI Segment 2 

73 0.507 0.022 

73 0.340 0.018 

STE-IDNI-Segment1 

vs.  
STE-IDNI Segment 2 

73 0.479 0.022 

73 0.357 0.019 

STE-IDI-Segment1 

vs.  
STE-IDI Segment 2 

73 0.456 0.021 

73 0.337 0.017 

Long-Term Excitement (LTE) 

LTE-WDNI-Segment1 

vs.  

LTE-WDNI Segment 2 

73 0.553 0.020 

73 0.392 0.017 

LTE-IDNI-Segment1 

vs.  

LTE-IDNI Segment 2 

73 0.496 0.019 

73 0.372 0.019 

LTE-IDI-Segment1 
vs.  

LTE-IDI Segment 2 

73 0.484 0.020 

73 0.349 0.016 

 

Next, data was arranged for the purpose of testing the 

effect interruption in task execution has on Emotiv metrics. A 

mean-difference variable was calculated between Segment3 

and Segment1 for both ill-defined scenarios. This approach is 

based on knowing the interruption occurs within Segment2 

while task clarity is controlled for. Observing the difference in 

measures for the start and completion of each ill-defined 

scenario is used to determine if the presence of an interruption 

produces detectable changes in Emotiv outputs. No significant 

differences were found between the ill-defined conditions. 

This approach was also used to examine the effect task clarity 

has on the Emotiv metrics over time within subjects. The same 

mean difference variable was created for WDNI and compared 

against both ill-defined scenarios. Running a repeated-

measures ANOVA on the mean-differences for all three 

conditions, the tests of within-subjects contrasts showed 

differences between scenarios for the two excitement metrics 

(STE: F (1, 72) = 4.117, p <.05; and LTE: F (1, 72) = 6.813, p 

<.025). Through pairwise comparison, only LTE showed 

reliable differences between ill- and well-defined conditions 

(IDI: [M = -.139, SD = .021] and IDNI: [M = -.125, SD = .021] 

vs WDNI [M = -.211, SD = .023]).           

Analysis was further conducted to observe between-

scenario differences of the Emotiv metrics by comparing the 

same time segments across conditions. This can inform if 

there are significant differences in metric values between 

conditions and where in time-on-task these variations are 

produced. Results from a repeated-measures ANOVA show 

significant differences across conditions for STE in time 

segment1, F = 4.509, p<.05; LTE in time segment1, F = 

11.975, p<.01; and LTE in Time Segment2, F = 4.416, p<.05. 

Performing a post-hoc pairwise comparison shows significant 

differences for STE in Time Segment1 between the IDI (M = 

.456, SD = .021) and WDNI (M = .507, SD = .022) conditions. 

Significant differences between conditions were also found for 

LTE Time Segment1 when comparing IDI (M = .484, SD = 

.020) with WDNI (M = .553, SD = .020), and IDNI (M = .496, 

SD = .019) with WDNI (M = .553, SD = .020). The only 

reliable difference for LTE Segment2 is between the IDI (M = 

.349, SD = .016) and WDNI (M = .392, SD = .017) conditions.  

A last test was run to examine correlations between 

Emotiv outputs and subjects’ self-reported levels of 

engagement and mood. Correlations were only found in 

Segment1 of the IDI condition where self-reported levels of 

engagement correlated with STE (r = .233, p<.05) and LTE (r 

= .244, p<.05). No other correlations were identified among 

variables. 

 

DISCUSSION  
 

Analysis was conducted to assess the accuracy and 

stability of the associated Affectiv Suite outputs in a learning 

context and to compare them to self-reported measures. Before 

breaking down analysis results, it is important to address the 

limitations associated with the Emotiv in considering its 

applicability as a low-cost solution for informing student 

models. First, there is no clear definition of what the outputs 

are truly reporting. A basis for this study is to determine if 

their output values reflect the detection state they are defined 

within. Next, there is no indication of how noise in data is 

filtered out. When the device determines there is too much 

noise to calculate a detection state, the Affectiv Suite outputs 

all values of 1 until noise in data reduces. This spike in state 

values can have a significant impact on calculated means. 

These limitations must be considered when interpreting the 

justification of results.  

Results from the study strongly support the hypothesis 

that the Emotiv can reliably differentiate brain activity 

between rest and active states. A visual representation of the 

metrics’ associated trends (see Figure 3 on next page) shows 

consistency in metric outputs across all conditions and within 

all time segments. Interestingly, going from a rest state into 

task execution produces instant increases in engagement levels 

and reductions in excitement levels. Once scenario interaction 

begins, engagement stabilizes and holds over time while both 

excitement metrics significantly decrease between Time 

Segment1 and Time Segment2. This inverse relationship is 

supported by previous research investigating stress and control 

of performance (Matthews, Davies, Westerman, & Stammers, 

2000). Through modes of compensatory control, an individual 

processing information compensates for any threats to 



performance through active control and effort (Hockey, 1986). 

This finding supports Emotiv’s ability to track engagement 

and excitement trends as they relate to learning events.    

 

 

 

 
Figure 3. Graph of Means across All Time Windows for Each 

Scenario Condition 

 

To further test the sensitivity in Emotiv metrics, repeated-

measure ANOVAs were run to view the effect the independent 

variables (interruption and clarity of task) had on output 

metrics. It was hypothesized that the Affectiv Suite outputs 

would be significantly affected by the presence of an 

interruption in task flow. Results did not support this claim. It 

is the authors’ opinion that an interruption in the pattern of 

conversation did not have an effect due to the static interactive 

environment and the nature of the task.  

Additional analysis was conducted to observe the trend in 

metrics between conditions as a participant progressed through 

scenario. This is to see the effect time on task has on Emotiv 

outputs. Results show significant differences in the two 

excitement metrics when comparing well-defined against ill-

defined conditions, where output values declined considerably 

faster in IDNI and IDI. This is supported by ill-defined tasks 

requiring more compensatory control of active attention and 

effort due to lack of clarity in task execution.  

Overall, this study supports the use of the Emotiv as a 

low-cost solution to modeling cognitive state for desktop 

training applications. Additional research is required to assess 

the effect varying methods of task intervention have on 

cognitive engagement across multiple computer-based 

platforms, and to further test Emotiv’s ability for detecting 

shifts specific to task engagement. This research can inform 

adaptive strategies to execute when cognitive function 

negatively impacts learning.  
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