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ABSTRACT 

 

Defense-wide efforts are underway to modernize learning technologies and increase capabilities related to warfighter 

performance. Many investments focus on discrete training experiences, which does not provide a platform for 

longitudinally assessing the competencies and progression of learners or the efficacy of training systems. Longitudinal 

assessments are needed both for training purposes and to support the transfer of training systems into the acquisition 

process.  

 

The STE (Synthetic Training Environment) Experiential Learning for Readiness (STEEL-R) project addresses the 

challenge of gathering and analyzing longitudinal training and performance data by establishing a common data 

interoperability layer that collects evidence through a competency-based experiential learning model. The STEEL-R 

architecture is based on and extends the US Advanced Distributed Learning (ADL) initiative’s Total Learning 

Architecture (TLA) to function across an ecosystem of synthetic and live training environments. This approach 

provides data traceability, supports evidence-based training decisions, and results in datasets that can inform 

acquisition teams and reduce the need to manually collect data when transitioning from research to acquisition. 

 

This paper starts by presenting the STEEL-R architecture, in which xAPI, the Generalized Intelligent Framework for 

Tutoring (GIFT), Learning Record Stores (LRSs), and the Competency and Skills System (CaSS) - all open source 

and developed for the DoD - play central roles. GIFT is used to orchestrate data from training exercises ranging from 

game-like VBS exercises to live field exercises in which soldiers are equipped with wearable sensors. The paper then 

discusses the data models used and data is collected over time and transformed into standardized patterns that can be 

used to produce fully traceable evidence-based decisions concerning trainees. The last section of the paper discusses 

the implications of this approach for evaluating system performance and how this work will aid DoD acquisition 

teams. 
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INTRODUCTION 

 

In this paper we present a data strategy for measuring the longitudinal impact of synthetic, semi-synthetic, and live 

training experiences on individual and team competency development. The strategy presented was developed in 

conjunction with the STE Experiential Learning - Readiness (STEEL-R; Goldberg et al., 2021) project led by the US 

Army DEVCOM Soldier Center and represents a Science and Technology (S&T) investment that supports the US 

Army Synthetic Training Environment (STE) modernization effort. Although presented in an Army context, the 

capabilities and business rules described within are applicable to similar programs in Department of Defense (DoD) 

agencies seeking to modernize their training infrastructure. This is enabled through data-driven learning that aligns 

with acquisition strategy and building for a future training and education ecosystem.  

 

Collecting longitudinal data and emphasizing experiential learning enables training systems to be continuously 

validated in mission contexts. Traditionally, acquisition programs verify that systems perform their intended function, 

validate those systems solve a targeted problem, and transition verified and validated systems to warfighters 

(Department of Defense (DoD), 2022). Once deployed, their outputs are monitored to ensure continued operation. In 

the case of training systems, these are high-level outputs such as credentials earned, pass rates, and hours of training.  

In fact, data standards for Live Virtual and Constructive (LVC) training are not designed to capture richer data to drive 

performance assessment and evaluation (Robson & Barr, 2019; Sottilare, Long & Goldberg, 2017).). This is 

problematic because the value and efficacy of simulation-based environments cannot be evaluated without considering 

the long-term impact on learner proficiency and without understanding the effects of fine-grained training activities 

on skill acquisition and retention.  

 

Capturing the required data goes beyond creating high fidelity practice environments. It involves identifying the skills 

and competencies that warfighters require and establishing evidence-centered metrics to assess proficiency at all 

phases of skill acquisition. This includes observing how skills and competencies improve, decay, and build upon each 

other over periods of weeks/months and, when analyzing generational changes, over many years.  To accomplish this, 

learning environments, including the STE, must measure and track longitudinal learning gains. Given the variety of 

systems and modes of training in a STE, data standards are needed for architectural compatibility and interoperability 

and to record and exchange data in common formats. In this paper we argue that acquisition teams should ensure that 

these systems: 
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● Use common definitions of human performance at the organizational proponent level; 

● Enable these definitions to evolve as doctrine and job requirements adapt to emerging capabilities and threats;  

● Produce data that can be stored in and retrieved from enterprise repositories and that conform with open 

standards so that these data can be analyzed in the present and in the future; 

● Measure and track the effects of the systems on human performance and skill acquisition through evidence 

centered design; and 

● Include data strategy and the above measures as key components of system evaluation. 

 

The US Army’s STE is an important acquisition program influencing this research (Goldberg et al., 2021).  STE is a 

collective training solution that delivers multi-domain exercises across reconfigurable ground, air, and dismounted 

assets. It leverages a core STE Information System (STE IS) with three primary components that enable a Plan, 

Prepare, Execute and Assess cycle for STE-enabled exercises. The STE-IS components include: One-World Terrain 

(OWT), Training Support Software (TSS) and Training Management Tools (TMT). These are described in detail at 

https://armyfuturescommand.com/ste/. With TMT, the US Army will have the means to automatically collect and 

persistently track data that supports the approach recommended in this paper. To take full advantage of STE’s 

investments in data-rich systems, it is necessary to have a uniform data strategy and the means to translate these data 

into (trusted) statements about competencies and skills. According to DoD policy (DoD, 2017), this should be provided 

by an architecture that builds from underpinnings established in the Total Learning Architecture (TLA) (Advanced 

Distributed Learning Initiative (ADL), 2021). This paper will describe how a program like the STE, and capabilities 

being researched in STEEL-R, will extend the existing TLA to influence skill acquisition through theories grounded 

in experiential learning and deliberate practice.  

 

EXPERIENTIAL LEARNING IN STEEL-R 

 

A key concept of the STEEL-R project is the implementation of a data strategy guided by the theory of Experiential 

Learning (Kolb & Kolb 2017; Owens et al., 2020). This approach breaks away from an instructor centered, group-

paced, and curriculum-based learning model, with an emphasis on ‘learning by doing’ across an ecosystem of 

resources. Experiential Learning infuses many modern-day theories, practices, and concepts to drive knowledge and 

skill acquisition through active learning and deliberate practice principles (Ericsson, 2006). Learning, measured as a 

change in knowledge, skill, and behavior, occurs through tension and conflict between a learner’s current state of 

competence and what impact an experience stimulates them with in the form of a task, a problem to solve, or a skill 

to perform.  Once a learner reflects on their performance and understands that change is required, they should form a 

means to change their knowledge, skill, and attitude for that task or problem in the future. That realization is the key 

moment to then provide the opportunity to provide a similar experience and then test the change in competence. With 

the advancements and eventual proliferation of synthetic and extended reality learning resources, establishing best 

practice methodologies for designing and tracking experiential learning events can produce a major alternative to the 

traditional course-centric learning method.   

 

Experiential learning also feeds the assertion of competence, which is dependent on longitudinal performance gains 

across several structured practice opportunities with scaffolds and feedback to guide the learning process. To support 

this requirement, STEEL-R builds on many components of the TLA, as well as existing Army Adaptive Instructional 

System (AIS) technology. The capabilities are combined to manage data capture and production of granular evidence-

based performance evaluations that are stored long term; and to use this persistent data to track competence 

development and atrophy of skills. STEEL-R defines experimental competence based on three parameters of 

performance monitored concurrently, and is represented in the WHO model: 

  

● how WELL someone performs over time,  

● how HARD the conditions that they performed against, and  

● how OFTEN they have performed that task or applied that competency, that well, and at that same level of 

difficulty.   
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We also postulate that attained competence from experiences natural atrophy or decay as a result of inactivity. The 

rate at which skill decay will occur will be based on task and skill dependent characteristics and based on existing 

modeling techniques that target multi-factor atrophy (Robson et al., 2022). With STEEL-R, if a team or person does 

not continue training with evaluation at varying levels of difficulty, and data is not collected on those events, the 

default assumption is that the team or persons will fall prey to not only well documented knowledge and/or skill decay 

that humans are known to experience over time.  

 

 

STEEL-R, THE SYNTHETIC TRAINING ENVIRONMENT, AND THE TLA 

 

STEEL-R’s data and data exchange strategy builds on the TLA. The TLA provides a collection of specifications and 

practices for interoperability among learning technologies (ADL, 2018). Multi-year investments in the TLA have 

created a foundation for formatting, exchanging, storing, and analyzing learning-related data over time across many 

different learning experiences. To date, however, the TLA has primarily been applied to data generated by individual 

learners interacting with traditional learning content. There are no established practices for extracting task and 

procedure level performance statements and team-level data from more operational military simulation and gaming 

environments. Repeatable and proven methods for doing this are required to fully realize the benefits of the STE, for 

which we found it necessary to extend the TLA in order to retain its core capabilities.  

 

The STEEL-R data strategy includes technologies from the S&T community that have been developed for transition 

and that inform future STE requirements. Leveraging these technologies, and the TLA, has accelerated STEEL-R 

prototype development and will simplify its transition into the STE.  

  

 

STEEL-R’s Competency Based Experiential Learning as an Implementation of the TLA  

 

STEEL-R currently focuses on creating experiential learning opportunities in a way that scales through all echelons 

in the US Army and that enables Soldiers to properly progress through developmental phases from crawl to walk to 

run and from untrained to expert within each phase. This progression is the internal view and the commander’s view 

of STEEL-R (Goldberg et al, 2021).  From an external perspective, a convenient way of conceptualizing STEEL-R is 

via a set of control loops that were initially defined for the TLA (ADL, 2020). As shown in Figure 1, STEEL-R extends 

this TLA control loop approach with principles driven by experiential learning.  Data from formal training, informal 

training, and credentials are still very much part of this approach, but the structure shown in Fig. 1 shifts the focus of 

training from traditional single-person, course-based credentials to evidence collected on individual and team 

competency over time. 
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In the current TLA model control loop 1 optimizes the current training session.  Control Loop 2 optimizes progress 

towards a credential. Control loop 3 in the TLA is described as “...the data to optimize competencies and credentials 

of an individual’s current job.” Control Loop 4 in the TLA supports the career arc of an individual in the context of 

the needs of their organization.  

 

In its current state, STEEL-R has implemented analogs of the first two loops. Loop 1 still optimizes the current training 

session within a specific learning system (synthetic, semi-synthetic, or live). Loop 2 optimizes the selection of the 

next activity as individuals and teams’ cycle through synthetic, semi-synthetic, and live training. Loop 3 in STEEL-R 

emphasizes competencies and skills instead of credentials. It includes skill decay and skill fade and considers their 

impact on the ability of a person or team to execute tasks within a role or job. This is the primary departure from the 

TLA approach. We envision the STEEL-R loop 4 as being similar to the TLA loop 4, with the differences that (a) 

STEEL-R includes team performance and (b) STEEL-R focuses on mission readiness as opposed to mission 

qualifications.  

 

 

  

Figure 1, STEEL-R Extension of TLA Control Loop 
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STEEL-R Implementation 

 

STEEL-R uses multiple open-source technologies within a Modular Open Systems Architecture (MOSA) to create an 

interoperable system of systems (Owens, K.P., et.al. 2020). Although currently configured for squad-level training, 

this architecture will enable the data strategy to scale to all echelons in the US Army. Fig. 2 depicts the STEEL-R 

architecture.  

 

 
Figure 2 STEEL-R Modular Open Systems Architecture 
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Experience Design Tool, Experience Objects, and Experience Events 

 

The Experience Design Tool (XDT) is an extension of existing tools used to author synthetic training exercises, often 

referred to as exercise design tools (EDTs). The XDT extends the traditional EDT by providing a consistent machine-

readable output that can be shared, modified, and used to automatically set up both training applications and intelligent 

tutoring systems, as well as to define reporting standards for performance data.    

 

The XDT’s main function is to produce an Experience Object (xObject) (Figure 3), which in the STEEL-R project is 

referred to as an Experiential Training Support Package (XTSP). The XTSP is based on the existing Army Warfighter 

Training Support Package requirements but is in a JavaScript Object Notation (JSON) format that can be used in the 

semantic web, in a local database, or in a portable file.  Experience objects may be viewed as defining a curriculum 

for experiential learning and as a content type within control loop 1 of Figure 1.  xObjects are machine-readable and 

syntactically normalized aggregations of the fundamental training elements produced by a traditional EDT plus 

measurable experiential learning events (called experience events, or xEvents) that are triggered manually or 

automatically in a training exercise.  A critical function of an xObject is to ensure that performance measures apply 

consistent data sources, methods (manual or automated), and criteria across the various training environments that are 

planned for inclusion in the STE. xObjects are designed to automate many of the tasks needed to set up and adapt 

synthetic exercises that are currently performed manually and to facilitate portability and interoperability of EDTs.     

 

xEvents are delineated by start trigger(s) and end trigger(s) within an xObject. Triggers provide context that is used 

in STEEL-R, where they define the points at which various competencies and skills are stimulated. xEvents can impact 

data support functions within a training environment. An example of a data support function is monitoring a sensor 

or the performance messages coming from a training application.  These messages may include each trainee’s activities 

and assessments of their performance on competencies and skills listed in the xEvent.  

 

 
Figure 3.  Experience Object with integrated Experience Events 
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Generalized Intelligent Framework for Tutoring (GIFT) 

 

In STEEL-R, GIFT functions as an intelligent tutoring service that is directly integrated with learning environments. 

It is an open-source government-managed Adaptive Instructional System (AIS) that provides tools and methods for 

managing multi-modal data synchronization, real-time assessment, adaptive coaching, and integrated After Action 

Reviews (Owens, K.P. et al, 2022). Learning environments are connected to GIFT via gateway modules. Within GIFT, 

an extensible Domain Knowledge File (DKF) maintains a task tree schema that is used to create assessment models 

and adaptive strategies linked to learning environments through an established and reusable gateway module.  

 

The DKF aligns with a scenario’s embedded xEvents that are defined in an XDT. A DKF represents xEvents as a set 

of tasks represented within a scenario, with configurable start and end triggers that designate when a task is active. 

For each represented DKF, a set of concepts and sub-concepts define the skills, processes, and procedures being 

enacted and assessed during task execution. Task, concept, and sub-concept definitions are stored as templates in 

STEEL-R.  The XDT interfaces with GIFT to calibrate a DKF template for use with each specific scenario. Templates 

are used to simplify the instantiation of controlled and maintainable assessment models (Goldberg et al., 2021). This 

architectural approach is designed to simplify the integration of existing and future learning experiences, whether live 

or synthetic, into a learning ecosystem.  

 

An important requirement driving this work is using GIFT to output rich evidence-based performance statements that 

can be tracked longitudinally and used to provide evidence of competency at the skill interaction and procedure level. 

To meet this need, GIFT was extended to auto-generate xAPI data that aligns to task and competency structures 

managed in the DKF. For each task, concept, and sub-concept xEvent in GIFT, both formative and summative 

assessments are generated through a GIFT xAPI Profile. For the first time, this provides an extension to the TLA that 

is designed to produce continuous assessments of experiential learning using data streams from any training system. 

As a byproduct of implementing this strategy, STEEL-R has produced a library of gateway modules that connect to a 

broad range of learning technologies, including Virtual Battlespace 3, Unity, Engagement Skills Trainer 2, mobile 

apps, and Learning Management Systems. 

 

xAPI Profiles and Learning Record Stores 

 

xAPI Profiles (IEEE P9274.2.1) provide the ability to curate data as it flows through STEEL-R’s implementation of 

the TLA. In particular, xAPI Profiles enable xAPI statements emitted by GIFT to be filtered and interpreted by the 

portion of STEEL-R that converts these statements into assertions of competency attainment (Blake-Plock, 2021). 

 

The xAPI data emitted by GIFT follows the templates of the GIFT xAPI Profile (Blake-Plock, 2022). That data is 

validated, stored, and made accessible by a Noisy LRS. In future implementations there could be multiple Noisy LRSs 

set up at the edge of the STE for the purpose of validating and capturing xAPI data both online and offline. The xAPI 

Profiles designed for STEEL-R were tested and validated by the Data and Training Analytics Simulated Input Modeler 

(Blake-Plock & Hoyt, 2019; Blake-Plock, 2019) to ensure that the xAPI data in STEEL-R is aligned with the 

expectations of downstream applications. 

 

To prepare this information for use by CaSS, xAPI data is forwarded through an LRS-Pipe statement filter depicted 

in Fig. 2 The filter provides the ability to configure and control the flow of data according to xAPI Profile statement 

templates. In this use case, the filter references the GIFT xAPI Profile. The configurable xAPI Profile data is validated 

against Data and Training Analytics Simulated Input Modeler (DATASIM) libraries, and only that data that is xAPI 

Profile conformant and that has been deemed useful in providing evidence to CaSS is passed through the filter. 

 

The data forwarded via LRS-Pipe is validated, stored, and made available in a Transactional LRS. From there, CaSS 

can retrieve filtered xAPI data and transform it into competency assertions. This entire process is automated and occurs 

in real-time. 
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Competency and Skills System (CaSS) 

The open-source Competency and Skills System (CaSS) has been a central element of the TLA since the TLA was 

conceived as a universal architecture for learning systems in 2016 (ADL, 2018). CaSS has four primary functions: (1) 

authoring and maintaining competency frameworks; (2) translating evidence from diverse systems into assertions 

about competencies; (3) calculating competency states based on assertions and (4) sharing this data across 

technological and organizational boundaries.  

 

In STEEL-R, CaSS frameworks have been developed to represent (1) doctrinal Army Tasks, (2) doctrinal structures 

that define individual soldier competencies (e.g., marksmanship), and (3) doctrinal structures that define echelon level 

competencies (e.g., communication and backup behavior). These frameworks define the competencies and skills that 

can be trained and possessed within an echelon and is designed to scale across all task and team structures. Current 

frameworks represent individual infantryman, fire teams, and squads.  

 

A core research activity in STEEL-R is calculating the level at which an individual or team possesses a competency. 

This is done via a “math model” (Robson, R. et al, 2022) that is expected to evolve and incorporate more predictive 

analytics in the future. This is instantiated in a software module called a “cartridge”. From an acquisition perspective, 

CaSS cartridges are well-defined deliverables that simplify versioning and adapting open-source software to new 

requirements.  To account for principles linked to experiential learning, deliberate practice and skill progression from 

untrained to expert, CaSS has recently integrated stress and difficulty into the assertions it records and into the 

computation of competency states. 

 

Dashboard and future adaptive systems 

To communicate with end-users, STEEL-R incorporates a dashboard that is populated by data from CaSS. The 

dashboard shows progression through developmental phases over time. This is a tool that commanders can use to 

adapt training exercises and that is described in more detail in (Owens, K.P. et al, 2022). As of this writing, the 

dashboard is being updated based on feedback from West Point Cadets. In addition to the dashboard, ongoing research 

is producing a navigator that provides deeper insight into what exercises, scenarios, and scenario configurations are 

appropriate for achieving a stated training objective.   
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STANDARDS USED IN STEEL-R 

 

Across the DoD, acquisition standards are among the key driving factors that “…are intended to successfully guide 

the technical planning and execution of a program across the acquisition life cycle” (DoD, 2022). STEEL-R 

incorporates multiple published standards, emerging standards, and data formats. It also is entirely based on open-

source software. This creates a data topology that is open (within cybersecurity constraints). The key data objects in 

STEEL-R and supporting standards are summarized in Table 1.  

 
Table 1. Data Objects and Supporting Standards 

Data Object Description Provenance 

Experiential Training 

Support Package 

A package of experience objects that can be 

used to implement experiential training 

scenarios 

Developed in STEEL-R, built in Java Script 

Object Notation (JSON), ISO/IEC 21778:2017 

GIFT’s Adaptive Learning 

Service API 

Reconfigured GIFT instance that exposes 

tutoring capabilities to an external system 

Developed in GIFT, delivered to STE vendors, 

source code available via gifttutoring.org 

Domain Knowledge Files Defines task trees, concepts, concepts, and 

assessment rules. In STEEL-R, the data in the 

DKF can be specified in an XTSP 

Developed in GIFT, open data structure 

authored in Extensible Markup Language 

(XML), W3C XML 1.1.  

Assessment Condition 

Classes 

 

A library of reusable algorithms and logic that 

use data from training exercises (obtained via 

a GIFT gateway module) to assess 

performance. Used in the DKF to provide 

automated assessments. 

Developed in GIFT, open data structure 

authored in Java. Supports interoperability 

with External Assessment services through 

MOSA integration standards.  

Experience Application 

Programming Interface 

(xAPI) Data 

Statements that capture training events and 

GIFT-generated performance assessments. 

xAPI statements are stored in Learning Record 

Stores (LRSs) within STEEL-R.  

Created by the ADL Initiative, standardized by 

the IEEE P9274.1.1. 

xAPI Profiles Specify the elements and semantics of xAPI 

statements.  

Created by the ADL Initiative, standardized by 

IEEE P9274.2.1. 

LRSPipe Provides the ability to use xAPI Profiles to 

govern the business logic of data in a TLA 

implementation.  

Created by Yet Analytics and published under 

the Apache 2.0 open-source license. First 

implemented in the STEEL-R project. 

Competency Frameworks Structured sets of competencies related to a 

specific battle drill, task, or mission. 

Frameworks include relations among 

competencies. Competencies are collections of 

knowledge, skills, abilities, and attitudes. 

Stored and processed in the open source CaSS 

software, which is standards agnostic. CaSS 

frameworks can be imported and expired using 

a variety of extant standards.  

CaSS Cartridge Encapsulates logic and business rules specific 

to the application domain, learner model, and 

training model. 

Developed by Eduworks CaSS Project. 

Enables severable extension of rules and 

models in different instantiations of CaSS and 

intended to facilitate open-source acquisition. 
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CAPTURING THE CHAIN OF EVIDENCE  

 

Assertions of proficiency are based on “…elements such as the conditions, additional evidence, an expiration date, a 

confidence, and more elements” (Robson et al., 2021). The chain of evidence depicted in figure 3, represents the bi-

directional data flow of STEEL-R. Users of STEEL-R author their XTSPs via the XDT as a series of xEvents to meet 

training requirements. As individuals and teams work through these events, which are defined by xAPI Profiles and 

DKFs, they generate xAPI data. That data is sampled by CaSS and results in evidence-based assertions of individual 

or team performance aligned to a competency framework. Linking conclusions about performance and competency 

levels to specific evidence from training systems establishes provenance of these conclusions. This, in turn, engenders 

trust in the conclusions and enables version control. Allowing assertions to change as definitions of proficiency and 

doctrine evolve over time. As shown in Figure 3, the chain of evidence from the core systems of STEEL-R is fully 

traceable through experience design, assessment methods, performance, reporting, computations, and dashboards.  

 

 
Figure 3 STEEL-R Chain of Evidence 

 

The evidence gathered in the updated control loops will not replace credentials or traditional descriptions of roles 

(MOS, squad leader, etc.). It is intended to provide a broader and more nuanced view of how the previous investments 

made in readying someone to execute a mission have prepared them and have persisted as demonstrable, transferable 

skills and competencies. The data generated by each exercise will be available for recalculation as the models of 

proficiency and roles of individuals change over time. This persistent record will facilitate evaluation of past 

investments and inform future training selections.  

 

There are multiple types of data in this chain of evidence that are not currently stored in an enterprise repository in the 

US Army and therefore do not have a single source of truth. To ensure consistent data structures are in place for use 

across STE, such repositories will need to be developed at the proponent level for storing xAPI profiles, competency 

frameworks, and assertions. These repositories will benefit from xAPI that is generated from systems across the 

enterprise. The next section discusses how these affordances can be put in place by the acquisition community.  
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TRANSITION TO THE ACQUISITION COMMUNITY 

 

The STEEL-R data strategy captures the value of each training system’s contribution to the development of 

proficiency in a Soldier. Transforming training systems validation into a continuous process will require new 

acquisition tools and a shift from credential-based to competency-based approaches. At this point in time, STEEL-R 

is an S&T project that requires additional work to be transitioned. For example, it must be accredited as conforming 

with the Risk Management Framework, and its ability to support all echelons within the US Army required further 

validation. Nonetheless, in its current form STEEL-R can offer technology, techniques, and lessons learned that 

acquisition teams can apply to increase the quality of their investments to support readiness. This section highlights 

these aspects of STEEL-R with a view towards providing current value as well as future transition.  

 

STEEL-R as a Data Strategy  

 

Standards 

The use of standards is key to “Leveling the technology playing field and enabling innovation by all stakeholders, 

including large, medium, and small companies” (IEEE SA, 2020). Standards ensure that the outcomes of any system 

integrated within an acquisition program can be 1.) leveraged by vendors to produce the types of data required and 2.) 

that data will be in a format that is portable to other systems regardless of the involvement of any specific vendor. 

Standards bodies are public, and often have US Government participation in their development and eventual 

consensus. Through strategic planning, acquisition programs can influence the standards required over a system's 

lifecycle.  

 

Assertions at the Enterprise Level 

The final transformation of data sampled within a STEEL-R conformant system is the assertion of competence by 

CaSS. That assertion, derived from the chain of evidence described earlier, represents the measured impact of an 

experience within a given context and its contribution to the learner state. Longitudinally tracking assertions creates a 

measure of realized value at a point in time. Storing, and processing assertions will require interoperable connections 

to an enterprise level LRS and CaSS instance that consumes edge-generated assertions when a connection is available. 

Connections of this form will allow the various instances of STEEL-R in the field to exchange data with STE to track 

the impact of learning across the US Army and will preserve trusted evidence over time at the proponent level so that 

conclusions about readiness are traceable back to training experiences and their descriptive information.  

 

Simplifying Interoperability: Timing, Technology, and Data 

The GIFT platform includes functionality that enables assessments generated by existing synthetic training systems 

to interoperate with the STEEL-R architecture. For xAPI to proliferate and enable the chain of evidence described in 

this paper, a platform for both existing and future learning systems must be in place to capture that data (Hernandez 

et al, 2019). Rather than instrumenting each training platform individually, GIFT presents an alternative which can 

save time and reduce costs during the acquisition lifecycle.  

 

In STEEL-R the generation of xAPI statements is based on the relationship between the xEvents for a given XTSP, 

the xAPI Profiles selected to describe the data generated from that event, and the DKFs in GIFT that enable assessment 

of the connected learning platform. Since 2012 the GIFT project has evolved to use various standards and incorporate 

adaptive learning strategies into existing systems (Hoffman & Goldberg, 2022). For acquisition teams the potential to 

scale this model will simplify creating ubiquitous datasets to model human performance. An additional benefit in 

GIFT is the ability to generate multiple versions of assessments in its DKFs, without reengineering a learning platform 

or its associate xAPI profile associations.  

Continuous Validation of Training Systems 

 

The usage of any training system can be measured and generate digital records through the technologies described in 

this paper. To realize the potential return on investment that shifting from credential centric measures to CBEL 

requires the chain of evidence described in this paper. A key step to reaching this future state is creating common, 

and specific definitions across the learning ecosystem of STE and other DoD programs.  
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A COMPETENCY BASED EXPERIENTIAL LEARNING ACQUISITION PACKAGE  

 

Learning engineering promises the ability to bridge the fields of instructional design and computer science to benefit 

DoD training and education (Bonnett, 2020). The current acquisition process leverages teams of ISDs, supplemented 

in some programs by engineers procuring simulation-based training. The traditional acquisition structure for 

instructional products includes a SOW establishing the work requirement, CDRLs establishing timing, and a DID for 

the format and content required (DoD 1999). To realize a Competency Based Experiential Learning (CBEL) additional 

DIDs must be established to bridge traditional software engineering and instructional design in acquisition with 

learning engineering. This is necessary to ensure that the chain of evidence is implemented. This will result in data to 

inform future investment and establish a learning engineering role in systems engineering. These recommendations 

are summarized in Table 2 Acquisition Documents for Learning Engineering Inclusion below. 

 
Table 2 Acquisition Documents for Learning Engineering Inclusion 

Deliverable Acquisition Process  Purpose 

Requirements  

(Redefine existing learning 

needs, data gaps, analysis 

processes, data strategy, etc.) 

● DI-SESS-81518b, Data Item Description: 

Instructional Performance Requirements 

Document (IPRD) 

Expand the IPRD as a foundational 

acquisition document beyond 

courseware and simulation to include an 

experiential learning focus. 

CBEL Design  

(Instantiates the core XTSPs, 

DKFs, xAPI Profiles, 

Competency Framework, and 

Learning Models to start an 

experiential learning project) 

● DI-SESS-81519C, Data Item Description: 

Instructional Media Requirements Document 

(IMRD) 

● DI-IPSC-81433 - Software Requirements 

Specification (SRS) 

Evolution of the SRS and IMRD to 

combine their key data points and 

expand around specific functional 

qualities for experiential learning.  

 

This document will iterate over the 

lifecycle of a learning platform.  

Learning Engineering  

(Expands the traditional 

software/systems engineering 

to include a CBEL product 

owner and their 

requirements) 

● DI-IPSC-81431 - System/ Subsystem 

Specification (SSS) 

● DI-IPSC-81432 - System/Subsystem Design 

Description (SSDD) 

● DI-IPSC-81433 - Software Requirements 

Specification (SRS) 

● DI-IPSC-81435 - Software Design Description 

(SDD) 

Bridging ISD with Computer Science 

establishes the value of learning 

engineering in the existing systems 

engineering processes of acquisition. 

 

Software acquisition materials 

adds specificity to the SSS, SSDD, SRS 

and SDD to develop software that 

incorporates the new learning specific 

design materials. 

Continuous Validation  

(Supports independent 

reviewers seeing impacts of 

CBEL, ties data from 

schoolhouse to practice) 

● DI-SESS-81697, Data Item Description: 

Instructional Design Documentation (IDD) 

● DI-IPSC-81438 - Software Test Plan (STP) 

● DI-IPSC-81439 - Software Test Description 

(STD) 

Integrate item 3.7, measuring learning 

performance with data artifacts in 

systems engineering such as a 

Requirements Traceability and 

Verification Matrix  

DID DI-MGMT-8213 
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CONCLUSION 

 

This paper has presented an approach where experiential learning and learning engineering can enhance DoD training 

and instructor centered, group-paced, and curriculum-based learning models. This will have far-ranging implications 

for how readiness is calculated and how skill decay and skill fade are digitally tracked as part of measuring proficiency. 

Data standards provide the foundation for a clear chain of evidence, providing traceability of learning goals to 

performance-based outcomes. 

 

For the training acquisition community to take advantage of the opportunity presented in STEEL-R, investments must 

be made in transitioning the technologies and practices described in this paper. Such a transition will require close 

collaboration among the organizations and personnel who are developing new training methodologies and planning 

the future procurement of systems to support the STE. In particular, technical documentation and acquisition processes 

must more fully account for learning engineering and associated best practices. This will enable instructional designers 

and engineers to better articulate desired outcomes in learning engineering terms and to explicitly drive the type of 

competency-based experiential learning that lies at the heart of the STEEL-R approach. 
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